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Online Appendix A: The Model with Land

We derive several results pertaining to the model with land developed in section 2.4. We also
calibrate the model to US data; the calibrated model is simulated in section 5.

Household’s Problem and Equilibrium

We solve the household’s utility-maximization problem and analyze equilibrium dynamics.
The current-value Hamiltonian of the household’s problem is

H(t, c(t), l(t)) = U(c(t),g(t))+V(l(t))+λ(t) {p(t) [1 − u(x(t))] k − p(t) [1 + τ(x(t))] c(t) − T(t)} .

It has control variable c(t), state variable l(t), and current-value costate variable λ(t). The
necessary conditions for an interior solution to the maximization problem are ∂H/∂c = 0,
∂H/∂l = δλ(t) − Ûλ(t), and the appropriate transversality condition (see Acemoglu 2009,
theorem 7.13). The conditions ∂H/∂c = 0 and ∂H/∂l = δλ(t) − Ûλ(t) yield (11) and (12).

Since all the equilibrium variables can be recovered from the costate variable λ(t), the
equilibrium can be represented as a dynamical system of dimension one, with variable λ(t).
The variable λ(t) satisfies the differential equation Ûλ(t) = δλ(t) − V′(l0). The steady-state value
of λ(t) is λ = V′(l0)/δ > 0. Since δ > 0, the steady state is a source. And since λ(t) is a
nonpredetermined variable, the equilibrium jumps to its steady-state position at t = 0.

As a consequence, in equilibrium, the state variable is constant at l(t) = l0 and the costate
variable is constant at λ(t) = V′(l0)/δ. Since V is strictly concave, we conclude that the
equilibrium path of c(t) and l(t) is in fact the unique global maximum of the household’s problem
(see Acemoglu 2009, theorem 7.14).

Utility Function

We compute the derivatives of the utility function, given by (8). We use the derivatives to calculate
private demand (14). We will also use the derivatives to compute the unemployment multipliers
and to calibrate and simulate the model. We first compute first derivatives:

∂ ln(U)
∂ ln(c)

= (1 − γ)
1
ε

( c
U

) ε−1
ε
, Uc ≡

∂U

∂c
=

[
(1 − γ)

U

c

] 1
ε

∂ ln(U)
∂ ln(g)

= γ
1
ε

( g
U

) ε−1
ε
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∂U

∂g
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γ
U

g

) 1
ε
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Next, we compute second derivatives:

∂ ln(Uc)

∂ ln(c)
=

1
ε
·

(
∂ ln(U)
∂ ln(c)

− 1
)

∂ ln(Uc)

∂ ln(g)
=

1
ε
·
∂ ln(U)
∂ ln(g)

.

When the Samuelson rule holds, MRSgc = Ug/Uc = 1, so

(A1) (g/c)∗ =
γ

1 − γ
, (g/y)∗ = γ, (c/y)∗ = 1 − γ.

Hence, at the Samuelson rule, the derivatives simplify to

∂ ln(U)
∂ ln(c)

= 1 − γ,
∂ ln(U)
∂ ln(g)

= γ

Uc = 1, Ug = 1(A2)
∂ ln(Uc)

∂ ln(c)
= −

γ

ε
,

∂ ln(Uc)

∂ ln(g)
=
γ

ε
.(A3)

Unemployment Multipliers

We compute the unemployment multiplier m, defined by (7), and the empirical unemployment
multiplier M , defined by (25). In particular, we establish (16). The multipliers and some of the
intermediate results will also be helpful to simulate the model.

First, we compute the effect of public consumption on the price of services. The price is
given by (15), which can be written p(g) = p0Uc(y

∗ − g,g)1−r . The elasticity of the price with
respect to public consumption therefore is

(A4)
d ln(p)
d ln(g)

= (1 − r) ·
[
∂ ln(Uc)

∂ ln(g)
−

g

y∗ − g
·
∂ ln(Uc)

∂ ln(c)

]
.

When unemployment is efficient and public expenditure is at the Samuelson level, the elasticities
ofUc are given by (A3), so we obtain

(A5)
d ln(p)
d ln(g)

= (1 − r) ·
1
ε
·

γ

1 − γ
.

Second, we compute the effects of public consumption and tightness on private demand. Private
demand is implicitly defined by (13), which can be writtenUc(c,g) = p(g) [1 + τ(x)]V′(l0)/δ.
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The elasticities of private demand with respect to public consumption and tightness therefore are

∂ ln(c)
∂ ln(x)

=
ητ(x)

∂ ln(Uc)/∂ ln(c)
(A6)

∂ ln(c)
∂ ln(g)

=
∂ ln(p)/∂ ln(g) − ∂ ln(Uc)/∂ ln(g)

∂ ln(Uc)/∂ ln(c)
.(A7)

When unemployment is efficient and public expenditure is at the Samuelson level, we can use (5),
(A3), and (A5). Thus, the elasticities of private demand are

(A8)
∂ ln(c)
∂ ln(x)

= −(1 − η) u∗
ε

γ
and

∂ ln(c)
∂ ln(g)

=
r − γ
1 − γ

.

Next, we determine the effect of public consumption on equilibrium tightness. The equilibrium
condition determining tightness is (6): y(x, k) = g + c(x, p(g),g). Differentiating this equation
with respect to g, we obtain the elasticity of tightness with respect to public consumption:

∂ ln(y)
∂ ln(x)

·
d ln(x)
d ln(g)

=
g

y
+

c
y
·

[
∂ ln(c)
∂ ln(g)

+
∂ ln(c)
∂ ln(x)

·
d ln(x)
d ln(g)

]
so that

(A9)
d ln(x)
d ln(g)

=
(g/y) + (c/y) (∂ ln(c)/∂ ln(g))

∂ ln(y)/∂ ln(x) − (c/y) (∂ ln(c)/∂ ln(x))
.

(In the differentiation, we have assumed that k is fixed; this assumption holds both in section 2.4
and in the simulations.) When unemployment is efficient and public expenditure is at the
Samuelson level, we can use (A8), (A1), and ∂ ln(y)/∂ ln(x) = 0. Hence, the elasticity of
tightness with respect to public consumption is

(A10)
d ln(x)
d ln(g)

=
1

(1 − η) u∗
·

r
ε
·

γ

1 − γ
.

Finally, we can compute the unemployment multipliers m and M. Equations (21) and (26)
imply that m and M are given by

(A11) m = (1 − η) · (1 − u) · u ·
y

g
·

d ln(x)
d ln(g)

and M =
m

1 − u + g
y ·

η
1−η ·

τ
u · m

.

Combining (A11) with (A10) and (A1), we obtain the values of m and M when unemployment
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Table A1. Parameter Values in Simulations

Description Source

ε = 1 Elasticity of substitution between g and c Amano and Wirjanto (1997, 1998)
γ = 0.16 Parameter of utility function Matches (G/C)∗ = 19.7%
s = 2.8% Monthly separation rate Landais, Michaillat, and Saez (2018)
η = 0.6 Matching elasticity Landais, Michaillat, and Saez (2018)
ω = 0.60 Matching efficacy Landais, Michaillat, and Saez (2018)
ρ = 1.4 Matching cost Matches u∗ = 6.1%
r = 0.46 Price rigidity Matches M = 0.5 at α = 1
p0 = 0.96 Price level Matches u = u∗ at α = 1

is efficient and public expenditure is at the Samuelson level:

m =
(1 − u∗) r
(1 − γ) ε

and M =
r

γr + (1 − γ) ε
.

Calibration

We calibrate the model using evidence from the United States. The calibration is summarized in
table A1. In section 5, we simulate the calibrated model over the business cycle.

We begin by calibrating the utility function (8). We set the elasticity of substitution between
public and private consumption to a plausible midrange estimate: ε = 1 (section 4). The utility
function is therefore Cobb-Douglas:

U(c,g) =
c1−γgγ

(1 − γ)1−γγγ
.

Next, we assume that Samuelson spending is the average level of public expenditure in the
United States for 1990–2014: (G/C)∗ = 19.7% (section 4). Since (A1) implies that γ =
(G/C)∗/[1 + (G/C)∗], we set γ = 0.16.

We then calibrate matching parameters. The calibration relies on the descriptive statistics
provided by Landais, Michaillat, and Saez (2018) for the US labor market between 1990 and
2014. They find a separation rate of s = 2.8% (online appendix B), a matching elasticity of
η = 0.6 (online appendix D), and a matching efficacy of ω = 0.60 (online appendix G). We use
these values. They also find average unemployment rate and tightness of u = 6.1% and x = 0.43
(online appendix G). We assume that these averages are efficient: u∗ = 6.1% and x∗ = 0.43.
Then, to set the matching cost, we use (3), which implies ρ = ωx−ητ/[(1 + τ)s]. This relation
holds for any τ and x, in particular when tightness is efficient. But when tightness is efficient,

4



τ∗ = (1 − η)u∗/η, so τ∗ = 4.1%. Plugging x∗ = 0.43 and τ∗ = 4.1% in the expression for ρ
yields ρ = 1.4.

Last, we calibrate the price mechanism (15), which can be written p(g) = p0Uc(y
∗ − g,g)1−r .

On average in the United States the unemployment multiplier is M = 0.5 (section 4). Since we
assume that on average unemployment is efficient and the Samuelson rule holds, M satisfies (16);
hence, to match M = 0.5, we set r = 0.46. Finally, we calibrate the price level such that when the
demand parameter α ≡ δ/V′(l0) = 1, unemployment is indeed efficient. We also assume that the
Samuelson rule holds when α = 1. We infer from (A2) that when unemployment is efficient and
the Samuelson rule holds, (13) becomes 1 = (1 + τ∗)p0α. This condition must be satisfied when
α = 1; as τ∗ = 4.1%, we need to set p0 = 0.96.
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Online Appendix B: Other Examples of Demand Side

In section 2.4 we describe a demand side with land. Here we present two other examples of
demand side: one with money and another one with government bonds. We find that they both
yield an equilibrium with the same properties as the land equilibrium.

Money in the Utility Function

We replace land by money and assume that households derive utility from real money balances.
Introducing money in the utility function is a classical way to generate an aggregate demand:
following Sidrauski (1967), a large number of business-cycle models with money in the utility
function have been developed (for example, Barro and Grossman 1971; Blanchard and Kiyotaki
1987). The presence of money in the utility function is meant to capture the transaction services
provided by money.

The representative household holds D(t) units of money. The supply of money is fixed at D0.
In equilibrium, the money market clears: D(t) = D0. The price of services in terms of money
is p(t). We specify a mechanism for the price of services: p(t) = p(g(t)). Let d(t) ≡ D(t)/p(t)

be the household’s real money balances. The household’s instantaneous utility function is
U(c(t),g(t)) +V(d(t)). The law of motion of the household’s real money balances is

Ûd(t) = [1 − u(x(t))] k − [1 + τ(x(t))] c(t) − π(t)d(t) −
T(t)
p(t)

,

where π(t) ≡ Ûp(t)/p(t) is the inflation rate. Since the government maintains public consumption
at a constant level g, the price is also constant at p = p(g), and inflation is zero. Accordingly, the
household’s real money balances follow

Ûd(t) = [1 − u(x(t))] k − [1 + τ(x(t))] c(t) −
T(t)

p
,

and in equilibrium the household’s real money balances are fixed at D0/p.
The household’s problem has the same structure as in the model with land. Hence, as in the

model with land, the equilibrium immediately converges to steady state. Private demand c(x, p,g)

is implicitly defined by
∂U

∂c
= [1 + τ(x)]

V′(D0/p)
δ

,

which is almost the same expression as in the model with land. The only difference is that the
price of service p affects private demand through a different channel. With land, p is the price
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of services relative to land, so it affects private demand through a substitution effect. Here, the
price of services relative to real money is 1, but p determines the amount of real money held by
households (D0/p), so it affects private demand through an income effect.

Bonds in the Utility Function

We replace land by government bonds and assume that households derive utility from real bond
holdings. Assuming that bonds enter the utility function is a simple way to generate an aggregate
demand in a dynamic cashless economy. Several papers in macroeconomics and finance make this
assumption (for example, Poterba and Rotemberg 1987; Krishnamurthy and Vissing-Jorgensen
2012; Fisher 2015; Campbell et al. 2017; Del Negro et al. 2017; Michaillat and Saez 2018).
Compared to other assets, government bonds have special features: they are particularly safe
and liquid (Krishnamurthy and Vissing-Jorgensen 2012); they are also useful to satisfy legal
requirements or for “window dressing” (Fair and Malkiel 1971, sec. 2). The presence of bonds in
the utility function is meant to capture these features.

The price of services in terms of money is p(t) (here money is only a unit of account).
The inflation rate is π(t) = Ûp(t)/p(t). The inflation rate is determined by a price mechanism:
π(t) = π(g(t)). Given the inflation rate, the price of services moves according to Ûp(t) = π(t)p(t).
The initial price p(0) is given.

The representative household holds B(t) bonds. Bonds are in zero net supply. In equilibrium,
the bond market clears: B(t) = 0. The rate of return on bonds is the nominal interest rate i(t). The
nominal interest rate is determined by the central bank. We assume that the central bank potentially
responds to inflation and fiscal policy; therefore, it sets an interest rate i(t) = i(π(t),g(t)).

In the economy there are two goods—services and bonds—and hence one relative price (public
and private services have the same price). The price of bonds relative to services is determined by
the real interest rate, r(t) = i(t) − π(t). Given monetary policy and the price mechanism, the real
rate can be written as a function of public consumption: r(t) = r(g(t)) ≡ i(π(g(t)),g(t)) − π(g(t)).
We assume that r(t) < δ.

Let b(t) ≡ B(t)/p(t) be the household’s real bond holdings. The household’s instantaneous
utility function isU(c(t),g(t)) +V(b(t)), and the law of motion of its real bond holdings is

Ûb(t) = [1 − u(x(t))] k − [1 + τ(x(t))] c(t) + r(t)b(t) −
T(t)
p(t)

.

In equilibrium, the household’s real bond holdings are fixed at 0.
Since the government maintains public consumption at a constant level g, the real interest rate

is also constant at r = r(g). Consequently, the household’s problem has the same structure as in
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the model with land. Hence, the equilibrium immediately converges to steady state. Furthermore,
private demand c(x,r,g) is implicitly defined by

∂U

∂c
= [1 + τ(x)]

V′(0)
δ − r

.

This expression is almost the same as in the model with land; the difference is that real interest
rate r appears instead of the price of services p. This is because the price of services relative to
real bonds is determined by r , not by p.
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Online Appendix C: Proofs

Proof of Lemma 3

Since MRSgc is a function of g/c, the first-order Taylor expansion of MRSgc at (g/c)∗ is

(A12) MRSgc(g/c) = MRSgc((g/c)∗) +
dMRSgc

dg/c
· (g/c − (g/c)∗) +O([g/c − (g/c)∗]2).

In addition, MRSgc((g/c)∗) = 1 and

dMRSgc

d(g/c)
= −

1
ε
·

1
(g/c)∗

.

Hence, (A12) becomes

(A13) 1 − MRSgc(g/c) =
1
ε
·
g/c − (g/c)∗

(g/c)∗
+O([g/c − (g/c)∗]2).

The 1/ε in the Taylor expansion is evaluated at (g/c)∗. But we can replace it by 1/ε evaluated at
g/c because the difference between the two is proportional to g/c−(g/c)∗. So once the difference
is multiplied by g/c− (g/c)∗ in (A13), it is absorbed by the term O([g/c− (g/c)∗]2). Thus, (A13)
yields (19).

Next, we write ∂ ln(y)/∂ ln(x) as a function of u:

∂ ln(y)
∂ ln(x)

= (1 − η)u − ητ(u).

The function τ(u) is defined by τ(u) = τ(x(u)), where τ(x) is given by (3) and x(u) = u−1(u) is
the inverse of the function u(x) given by (2). We have

τ′(u) = τ′(x) · x′(u) =
τ′(x)

u′(x(u))
=

(1 + τ)ητ/x
−(1 − η)(1 − u)u/x

= −
(1 + τ)ητ

(1 − η)(1 − u)u
.

Equation (5) says that ητ(u∗) = (1 − η)u∗, which implies

τ′(u∗) = −
1 + τ(u∗)

1 − u∗
.

Using again ητ(u∗) = (1 − η)u∗, we obtain

−ητ′(u∗) =
η + ητ(u∗)

1 − u∗
=
η + (1 − η)u∗

1 − u∗
= η +

u∗

1 − u∗
.
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Hence, the derivative of ∂ ln(y)/∂ ln(x) with respect to u at u∗ is

(1 − η) − ητ′(u∗) =
1

1 − u∗
.

Furthermore, ∂ ln(y)/∂ ln(x) = 0 at u∗. Thus, a first-order Taylor expansion of ∂ ln(y)/∂ ln(x) at
u∗ yields (20).

Finally, since the elasticity of u(x) with respect to x is −(1 − η)(1 − u), we find that

m = −y ·
u
g
·

d ln(u)
d ln(g)

=
y

g
(1 − η) (1 − u) u

d ln(x)
d ln(g)

=
y

x
(1 − η) (1 − u) u

dx
dg
.

We obtain (21) by rearranging this equation.

Proof of Lemma 4

We start from (18). First, we approximate 1 − MRSgc with (19). Next, we rewrite dx/dg with
(21) and approximate ∂y/∂x with (20). These manipulations yield

(A14)
1
ε
·
g/c − (g/c)∗

(g/c)∗
=

m
1 − η

·
u − u∗

(1 − u)(1 − u∗)u
+O([g/c − (g/c)∗]2 + [u − u∗]2).

We can rewrite (A14) as

(A15)
1
ε
·
g/c − (g/c)∗

(g/c)∗
=

m
1 − η

·
u − u∗

(1 − u∗)2u∗
+O([g/c − (g/c)∗]2 + [u − u∗]2).

This is because the difference between 1/[(1 − u)(1 − u∗)u] and 1/
[
(1 − u∗)2u∗

]
is O(u − u∗).

Once this difference is multiplied by u−u∗ in (A14), it is absorbed by the term O([g/c − (g/c)∗]2+

[u − u∗]2). We obtain (22) from (A15).

Proof of Proposition 1

The economy starts at an equilibrium [(g/c)∗,u0], where the unemployment rate u0 is inefficient.
Since u0 , u∗, the optimal g/c departs from (g/c)∗. In (22), the multiplier m and unemployment
rate u are functions of g/c, so they respond as g/c moves away from (g/c)∗, and we cannot read
the optimal g/c off the formula. In this proof, we derive a formula giving the optimal g/c as a
function of fixed quantities.

First, we express the equilibrium values of all variables as functions of [u,g/c]. The proof of
lemma 3 showed that x and τ can be written as functions of u. Since y = (1− u)k/(1+ τ), we can
also write y as a function of u. Since g = y · (g/c)/[1 + g/c], g can be written as a function of u
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and g/c. As c = y − g, c can also be written as a function of u and g/c. Last, since C = (1 + τ)c,
G = (1 + τ)g, and Y = (1 + τ)y, we can write C, G, and Y as functions of u and g/c.

Among all pairs [u,g/c], the only pairs describing an equilibrium are those consistent with
the equilibrium condition u = u(x(g)), where g is the function of u and g/c described above, x(g)

is the function defined by (6), and u(x) is the function defined by (2). This equilibrium condition
defines the unemployment rate as an implicit function of g/c, denoted u(g/c). Then, the pairs
[u(g/c),g/c] for all g/c > 0 are the equilibria for all possible levels of public expenditure.

We start by linking u to u0 and g/c. We write a first-order Taylor expansion of u(g/c) around
u((g/c)∗) = u0, subtract u∗ on both sides, and divide both sides by u∗:

(A16)
u − u∗

u∗
=

u0 − u∗

u∗
+

1
u∗
·

du
d ln(g/c)

·
g/c − (g/c)∗

(g/c)∗
+O([g/c − (g/c)∗]2).

To compute du/d ln(g/c) at [u0, (g/c)∗], we decompose the derivative:

du
d ln(g/c)

=
du

d ln(g)
·

d ln(g)
d ln(g/c)

.

First, the definition of the unemployment multiplier implies that

du
d ln(g)

= −m · (g/y)∗,

where m is evaluated at [u0, (g/c)∗]. Second, we compute d ln(g)/d ln(g/c). We have

ln(g/c) = ln(g) − ln(y(x(g/c), k) − g).

Differentiating with respect to ln(g/c) yields

(A17) 1 =
d ln(g)

d ln(g/c)
−

y

c
·
∂ ln(y)
∂ ln(x)

·
d ln(x)

d ln(g/c)
+
g

c
·

d ln(g)
d ln(g/c)

.

Reshuffling the terms, we obtain

d ln(g)
d ln(g/c)

=
c
y
+
∂ ln(y)
∂ ln(x)

·
d ln(x)

d ln(g/c)
.

At u∗, ∂ ln(y)/∂ ln(x) = 0, so at u0, ∂ ln(y)/∂ ln(x) is O(u0 − u∗). Once this term is multiplied by
g/c − (g/c)∗ in (A16), it creates a term that is O([u0 − u∗]2 + [g/c − (g/c)∗]2). Thus, we omit
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the term (∂ ln(y)/∂ ln(x)) · (d ln(x)/d ln(g/c)) and set

d ln(g)
d ln(g/c)

= (c/y)∗.

So far, we have shown that

(A18)
u − u∗

u∗
=

u0 − u∗

u∗
− mz1

g/c − (g/c)∗

(g/c)∗
+O([u0 − u∗]2 + [g/c − (g/c)∗]2),

where
z1 =

(g/y)∗(c/y)∗

u∗
.

Equation (22) includes a remainder that is O([u − u∗]2 + [g/c − (g/c)∗]2). Equation (A18)
implies that (u − u∗)2 is O([u0 − u∗]2 + [g/c − (g/c)∗]2). Thus the remainder in formula (22) is
O([u0 − u∗]2 + [g/c − (g/c)∗]2). Combining (22) and (A18), we therefore obtain

(A19)
g/c−(g/c)∗

(g/c)∗
= z0εm

[
u0−u∗

u∗
−mz1

g/c−(g/c)∗

(g/c)∗

]
+O([u0−u∗]2+ [g/c−(g/c)∗]2).

In (A19), ε and m are evaluated at [u,g/c]. Instead we can use the values of ε and m evaluated at
[u0, (g/c)∗] because the difference between the two values of each statistic is O([u − u0] + [g/c −

(g/c)∗]). So once the differences are multiplied by g/c − (g/c)∗ and u0 − u∗ in (A19), they are
absorbed by O([u0 − u∗]2 + [g/c − (g/c)∗]2). Thus, (A19) yields (23).

To finish the proof, we derive (24). With the previous arguments, (22) can be written

g/c − (g/c)∗

(g/c)∗
= z0εm

u − u∗

u∗
+O([u0 − u∗]2 + [g/c − (g/c)∗]2),

where ε and m are evaluated at [u0, (g/c)∗]. Replacing the left-hand side of this equation by the
right-hand side of (23), and dividing everything by z0εm, we obtain (24).

Proof of Lemma 5

As G = [1 + τ(x(g))] g and the elasticity of 1 + τ(x) with respect to x is ητ, we have

(A20)
d ln(G)
d ln(g)

= 1 + ητ
d ln(x)
d ln(g)

= 1 +
g

y
·

η

1 − η
·

τ

(1 − u)u
· m,

12



where the last equality is obtained from (21). Furthermore, the definitions of m and M imply

m = −y
du
dg
= −

Y
1 + τ(x)

·
du
dG
·

dG
dg
=

g

G
(1 − u)M

dG
dg
= (1 − u)M

d ln(G)
d ln(g)

.

We now plug into this equation the expression for d ln(G)/d ln(g) obtained in (A20):

m = (1 − u) · M +
g

y
·

η

1 − η
·
τ

u
· M · m.

We obtain (26) by rearranging this equation.
Next, consider a change in public expenditure dG. This change leads to a change du in

unemployment and, since Y = (1 − u) k, to a change dY = −k · du in output. Hence,

dY
dG
= −k

du
dG
= −

Y
1 − u

·
du
dG
= M .

13



Online Appendix D: Distortionary Taxation

We introduce endogenous labor supply and a distortionary income tax to study how distortionary
taxation affects optimal public expenditure. We compare two approaches to taxation: the traditional
approach in public economics and macroeconomics, which uses a linear income tax; and the
modern approach in public economics, which uses a nonlinear income tax implemented following
the benefit principle. With either approach, the formula for optimal stimulus spending remains
the same as when labor supply is fixed. These results are summarized in section 3.3.

Traditional Approach

In the traditional approach to taxation, the government uses a linear income tax τL to finance public
expenditure. With the linear income tax, the household’s labor income becomes (1− τL)Y (x, k) =

(1 − τL) [1 − u(x)] k. To finance public expenditure G, the tax rate must be τL = G/Y = g/y.
The household chooses k to maximize utility. The marginal rate of substitution between labor

and private consumption is MRSkc =W
′(k)/(∂U/∂c). As usual, the household supplies labor

until the marginal rate of substitution between labor and consumption equals the post-tax real
wage:

(A21) MRSkc = (1 − τL)
1 − u(x)
1 + τ(x)

.

Indeed, one unit of labor is only sold with probability 1 − u(x). When it is sold, it only yields
1/[1 + τ(x)] units of consumption. Hence, the effective real wage is [1 − u(x)] /[1 + τ(x)], and
the post-tax real wage is (1 − τL) [1 − u(x)] /[1 + τ(x)].1

The supply decision is distorted by the income tax: a higher τL implies a lower k. In fact,
(A21) implicitly defines a function k(g) describing how productive capacity responds to a change
in public expenditure and the associated tax change. As the income tax is distortionary, the
function k(g) is decreasing in g.

The welfare of an equilibrium is U(c,g) − W(k). Given a tightness function x(g) and a
capacity function k(g), the government chooses g to maximizeU(y(x(g), k(g))−g,g)−W(k(g)).
The first-order condition of the government’s problem is

0 =
∂U

∂g
−
∂U

∂c
−W′(k)

dk
dg
+
∂U

∂c
·
∂y

∂k
·

dk
dg
+
∂U

∂c
·
∂y

∂x
·

dx
dg
.

1Formally, for all the models in section 2 and online appendix B, the first-order condition with respect to k
isW ′(k) = (1 − τL) [1 − u(x)] λ, where λ is the costate variable associated with real wealth in the household’s
Hamiltonian. We combine this equation and (11) to obtain (A21).
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Dividing the condition by ∂U/∂c, we obtain

1 = MRSgc −

(
MRSkc −

∂y

∂k

)
·

dk
dg
+
∂y

∂x
·

dx
dg
.

Households’ optimal labor supply, given by (A21), implies that MRSkc = (1 − τL)(∂y/∂k).
The government’s budget constraint implies that τL = g/y. Last, equation (4) implies that
∂y/∂k = y/k. Hence, −(MRSkc − ∂y/∂k) = τLy/k = g/k, and we have proved the following:

LEMMA A1: With a linear income tax, optimal public expenditure satisfies

(A22) 1 −
d ln(k)
d ln(g)

= MRSgc︸                     ︷︷                     ︸
modified Samuelson rule

+
∂y

∂x
·

dx
dg︸   ︷︷   ︸

correction

.

Formula (A22) differs from formula (18), but the two have the same structure once the
Samuelson rule is modified to account for distortionary taxation. Indeed, formula (A22) can be
written as the modified Samuelson rule plus a correction equal to (∂y/∂x) · (dx/dg). The statistic
1 − d ln(k)/d ln(g) > 1 in the modified Samuelson rule is the marginal cost of funds; it is more
than one because the linear income tax distorts labor supply.

In a situation with distortionary taxation, the Samuelson rule is modified, so we also need to
modify the definition of Samuelson spending:

DEFINITION A1: With a linear income tax, Samuelson spending (g/c)∗ is given by the modified
Samuelson rule:

MRSgc((g/c)∗) = 1 −
d ln(k)
d ln(g)

.

The elasticity d ln(k)/d ln(g) < 0 is evaluated at optimal public expenditure.

Because the marginal cost of funds (1 − d ln(k)/d ln(g)) is greater than one, the modified
Samuelson rule recommends a lower level of public expenditure than the regular Samuelson
rule. Therefore, Samuelson spending is lower with a linear income tax. Nevertheless, since the
correction to the Samuelson rule is the same in formula (A22), our sufficient-statistic formula for
optimal stimulus spending remains the same:

PROPOSITION A1: Suppose that the economy is initially at an equilibrium [(g/c)∗,u0]. Then,
with a linear income tax, optimal stimulus spending is given by (23) and the unemployment
rate under the optimal policy is given by (24), where the statistic z1 is generalized to allow for
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supply-side responses:

z1 =
(g/y)∗(c/y)∗

u∗
·

1
1 − d ln(k)/d ln(g)

.

The elasticity d ln(k)/d ln(g) is evaluated at [(g/c)∗,u∗].

Proof: With a linear income tax, Samuelson spending satisfies

MRSgc(g/c∗) = 1 −
d ln(k)
d ln(g)

,

so formula (A22) implies that optimal public expenditure satisfies

MRSgc((g/c)∗) − MRSgc(g/c) =
∂y

∂x
·

dx
dg
.

As in lemma 3, we have

MRSgc((g/c)∗) − MRSgc(g/c) =
1
ε
·
g/c − (g/c)∗

(g/c)∗
.

Moreover, (20) and (21) remain valid. Combining these results, we obtain (22).
Since formula (22) remains valid, the proof follows the same steps as the proof of proposition 1.

The only difference occurs once we reach equation (A17). With a supply-side response to taxation,
the equation becomes

1 =
d ln(g)

d ln(g/c)
−

y

c
·
∂ ln(y)
∂ ln(x)

·
d ln(x)

d ln(g/c)
−

y

c
·
∂ ln(y)
∂ ln(k)

·
d ln(k)
d ln(g)

·
d ln(g)

d ln(g/c)
+
g

c
·

d ln(g)
d ln(g/c)

.

Using the same argument as in the proof of proposition 1, we can omit the term containing
the factor ∂ ln(y)/∂ ln(x). Since ∂ ln(y)/∂ ln(k) = 1, we therefore obtain d ln(g)/d ln(g/c) =
(c/y)∗/(1 − d ln(k)/d ln(g)). Using the new expression for d ln(g)/d ln(g/c), we conclude the
proof just like the proof of proposition 1. �

The unemployment multiplier in formulas (23) and (24) is a policy elasticity, in the sense of
Hendren (2016). It measures the change in unemployment for a change in public expenditure
accompanied by the change in taxes maintaining a balanced government budget. In section 3
taxes are not distortionary, so the unemployment multiplier should be measured using a policy
reform in which taxes are nondistortionary. Here taxes are distortionary, so the unemployment
multiplier should be measured using a policy reform in which the tax change distorts labor supply.

When taxation is nondistortionary, equation (26) shows that the unemployment multiplier m
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in our sufficient-statistic formula is closely related to the empirical unemployment multiplier
M. Furthermore, the output multiplier is equal to M, so all our results remain the same if we
reformulate them with the output multiplier instead of m. But when taxation is distortionary,
things are different, and the output multiplier cannot be used to design optimal public expenditure.
With distortionary taxation, (26) remains valid, but the link between the output multiplier and M

breaks down. Indeed, output is Y = (1 − u)k so

dY
dG
= −k

du
dG
+ (1 − u)

dk
dG
= −

Y
1 − u

·
du
dG
+

Y
k
·

dk
dG
= M +

Y
k
·

dk
dG

.

Since taxes are distortionary, dk/dG < 0 and

M =
dY
dG
−

Y
k
·

dk
dG

>
dY
dG

.

Thus, when a change in taxes distort the capacity supplied by households, the unemployment
multiplier M is the output multiplier net of the supply-side response (Y/k)(dk/dG). The supply-
side response measures the percent change in labor supply when public expenditure increases by
one percent of GDP. As taxation is distortionary, the supply-side response is negative and the
unemployment multiplier is larger than the output multiplier. The unemployment multiplier is the
correct sufficient statistic whether taxation is distortionary or not. With distortionary taxation,
there is a wedge between unemployment and output multipliers equal to the supply-side responses,
so the output multiplier is not useful to compute optimal stimulus spending.

Intuitively, an increase in public expenditure affects unemployment and the associated increase
in taxes reduces labor supply. The negative effect on labor supply determines the marginal cost of
fund and Samuelson spending but has nothing to do with the correction to the Samuelson rule
and stimulus spending. The effect on unemployment, on the other hand, determines the correction
to the Samuelson rule and stimulus spending. Since the output multiplier conveys information
about the effect of public spending on labor supply, it is not directly relevant to stimulus spending.
Since the unemployment multiplier measures the effect of public spending on unemployment, it
governs optimal stimulus spending.

Modern Approach

We turn to the modern approach to taxation in public economics, which uses a nonlinear income
tax implemented according to the benefit principle. The benefit principle, which was introduced
by Hylland and Zeckhauser (1979) and fully developed by Kaplow (1996, 1998), is an important
result in modern public-economic theory: it states that optimal public expenditure is disconnected
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from distortionary taxation.2 Hence, extra public expenditure should be financed by a change in
the nonlinear tax schedule that leaves all individual utilities unchanged, and thus that does not
distort further labor supply.

We assume that the government finances any increase in public expenditure by an increase in
nonlinear income tax following the benefit principle: the tax schedule is changed to offset the
extra benefit received by any individual from the extra public expenditure. Thus, changing public
expenditure does not affect individual utilities and does not alter labor supply.

More precisely, we assume that households choose capacity k to maximize utility, and
that public expenditure is funded by a distortionary, nonlinear income tax T(k). We start from
an equilibrium [c,g, x, k]. To ease notation, we define φ(x) = [1 − u(x)] /[1 + τ(x)]. With the
income tax, the household’s disposable income becomes [1 − u(x)] [k − T(k)]. In equilibrium,
households’ disposable income equals their expenses: [1 − u(x)] [k − T(k)] = [1 + τ(x)] c so
c = φ(x) [k − T(k)].

We implement a small change in public expenditure dg funded by a small tax change dT(k)

that satisfies the benefit principle. This change triggers a small change dx in tightness. By the
benefit principle, the tax change dT(k) is designed to keep the household’s utility constant for
any choice of k. For all k, dT(k) satisfies

(A23) U(φ(x) [k − T(k)] ,g) = U(φ(x + dx) [k − T(k) − dT(k)] ,g + dg).

The left-hand side and right-hand side of the equation define two identical functions of k. This
implies that the household does not change his choice of k after the reform: labor supply is
unaffected by a change dg funded by the benefit principle.

Taking a first-order expansion of the right-hand side of (A23), and subtracting the left-hand
side from the right-hand side, we obtain

∂U

∂c
· {φ′(x) [k − T(k)] dx − φ(x)dT(k)} +

∂U

∂g
· dg = 0.

Dividing by ∂U/∂c and re-arranging yields

φ′(x)T(k)dx + φ(x)dT(k) = MRSgcdg + φ′(x)kdx.

Accordingly, the effect of the reform on the government budget balance R = φ(x)T(k) − g is

dR = φ′(x)T(k)dx + φ(x)dT(k) − dg =
(
MRSgc − 1

)
dg +

∂y

∂x
dx.

2See Kaplow (2004) and Kreiner and Verdelin (2012) for a survey of the benefit-principle approach.
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(We used dk = 0 and φ′(x)k = ∂y/∂x.) At the optimum, dR = 0, so we have proved the
following:

LEMMA A2: Under the benefit principle, optimal public expenditure satisfies (18).

Under the benefit principle, (18) remains valid and capacity k is not affected by changes in
public expenditure. Thus, our sufficient-statistic formula remains valid:

PROPOSITION A2: Suppose that the economy is initially at an equilibrium [(g/c)∗,u0]. Then,
under the benefit principle, optimal stimulus spending is given by (23) and the unemployment
rate under the optimal policy is given by (24).

Under the benefit principle, although taxation is distortionary, we obtain the same results as
with a fixed labor supply. Furthermore, since there are no labor-supply distortions for a marginal
increase in public expenditure, output and unemployment multipliers are equal, and the output
multiplier can be used to design optimal stimulus spending.
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Online Appendix E: Fixprice Model

We compute the amount of stimulus spending required to fill the output gap in the fixprice model
developed in section 3.4. In addition, we present an extension of the fixprice model in which
productive capacity is endogenous, not fixed. We derive a sufficient-statistic formula for optimal
public expenditure in that extended model.

Stimulus Spending Required to Fill the Output Gap

We derive (29). The economy starts at an equilibrium [(g/c)∗, y0], where output y0 < k is
inefficiently low. We compute the stimulus spending g/c − (g/c)∗ required to fill the output gap
k − y0. To that end, we link y to g/c. We write a first-order Taylor expansion of y(g/c) around
y((g/c)∗) = y0, evaluate it at y(g/c) = k, and divide it by y0:

(A24)
k − y0
y0

=
d ln(y)

d ln(ln(g/c))
·
g/c − (g/c)∗

(g/c)∗
+O([g/c − (g/c)∗]2).

Next we compute d ln(y)/d ln(g/c) using the following decomposition:

(A25)
d ln(y)

d ln(g/c)
=

d ln(y)
d ln(g)

·
d ln(g)

d ln(g/c)
= (g/y)∗ ·

dy
dg
·

d ln(g)
d ln(g/c)

,

where dy/dg is evaluated at [(g/c)∗, y0].
The last step is to compute d ln(g)/d ln(g/c). We have ln(g/c) = ln(g) − ln(y − g). Differen-

tiating this equation with respect to ln(g/c) yields

1 =
d ln(g)

d ln(g/c)
− (y/c)∗

d ln(y)
d ln(g/c)

+ (g/c)∗
d ln(g)

d ln(g/c)
.

Using (A25) and reshuffling the terms, we obtain

(A26)
d ln(g)

d ln(g/c)
=

1
1 + (g/c)∗ − (g/c)∗(dy/dg)

.

Finally we combine all the results. Plugging (A26) into (A25), we find

(A27)
d ln(y)

d ln(g/c)
=

(g/y)∗(dy/dg)
1 + (g/c)∗ − (g/c)∗(dy/dg)

=
(c/y)∗(g/y)∗(dy/dg)
1 − (g/y)∗(dy/dg)

.
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Combining (A27) with (A24), we then obtain

g/c − (g/c)∗

(g/c)∗
=

1 − (g/y)∗(dy/dg)
(c/y)∗(g/y)∗(dy/dg)

·
k − y0
y0
+O([g/c − (g/c)∗]2),

where the output multiplier dy/dg is evaluated at [(g/c)∗, y0]. This equation yields (29).

Endogenous Productive Capacity

We extend the fixprice model by introducing endogenous productive capacity, and we describe
optimal public expenditure in that model. We could introduce endogenous capacity by assuming
that households are price-takers: they supply capacity k to maximize utility given the price of
services. This assumption has a downside, however: it introduces an internal inconsistency in
the model when there is excess supply. Indeed, aggregate supply would describe how much
households desire to work for a given price, assuming that they can sell all the services that they
supply to the market. In reality, households are unable to sell all their services because there is
excess supply. To be consistent, the model should allow households to revise their supply decision
given that the probability to sell a given service is less than one. But the fixprice model does not
allow for this.3

We address this issue as in the New Keynesian literature. We assume that households are
price-setters: they set the price of services to maximize profits and supply the amount of services
demanded at the profit-maximizing price. When the price is fixed, households simply supply as
many services as required to satisfy demand (for example, Nakamura and Steinsson 2014, p. 773).
Let y be aggregate output of services, which is demand-determined. Since households supply
exactly the amount of services required by demand, aggregate supply of services is k = y.

The government now chooses g to maximizeU(y − g,g) −W(y). The first-order condition
of the maximization is

(A28) 1 = MRSgc +
dy
dg
· (1 − MRSkc),

where MRSkc =W
′(k)/(∂U/∂c) is the marginal rate of substitution between labor and private

consumption. This equation is the same as (28), except that the output multiplier is multiplied
by the labor wedge 1 − MRSkc.4 This equation is also the same as equation (45) in Woodford
(2011)—this is not surprising since our fixprice model has the same ingredients as Woodford’s

3The matching model addresses this issue by introducing a matching function that gives the probability to sell
services, and by letting households take the probability into account when they make their supply decision.

4The labor wedge plays an important role in macroeconomics (see Shimer 2009).
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New Keynesian model.
The economy can be in three possible regimes, depending on the labor wedge : efficient

production when 1 − MRSkc = 0, insufficient production when 1 − MRSkc > 0 (a slump), and
excessive production 1 − MRSkc < 0 (a boom). When there is efficient production, MRSkc = 1
and the Samuelson rule remains valid. When there is excessive or insufficient production, things
change: MRSkc , 1 so the correction to the Samuelson rule is nonzero.

We assume that the economy starts at [(g/c)∗, y0], with a marginal rate of substitution
(MRSkc)0 , 1. Following the procedure developed in the matching model, we obtain a formula
expressed as a function of fixed (not endogenous) sufficient statistics:

PROPOSITION A3: Suppose that the economy is initially at an equilibrium [(g/c)∗, y0]. Then
optimal stimulus spending satisfies

(A29)
g/c − (g/c)∗

(g/c)∗
≈

ε · (dy/dg)

1 + z3ε
(dy/dg)2

1−(g/y)∗(dy/dg)

[1 − (MRSkc)0] .

The statistics ε and dy/dg are evaluated at [(g/c)∗, y0]. Further,

z3 =
(MRSkc)0 (c/y)∗(g/y)∗

κ
,

where κ is the Frisch elasticity of labor supply:

1
κ
=

d ln(W′(k))
d ln(k)

.

Under the optimal policy, the labor wedge is

(A30) 1 − MRSkc ≈
1

1 + z3ε
(dy/dg)2

1−(g/y)∗(dy/dg)

[1 − (MRSkc)0] .

The approximations (A29) and (A30) are valid up to a remainder that is O([g/c − (g/c)∗]2).

Proof: Optimal stimulus spending satisfies (A28), which can be rewritten using (19):

(A31)
g/c − (g/c)∗

(g/c)∗
= ε ·

dy
dg
· (1 − MRSkc) +O([g/c − (g/c)∗]2).

As in the matching model, MRSkc responds to g/c when it deviates from (g/c)∗, so we cannot
use (A31) to compute optimal stimulus spending. We follow the procedure developed in the
matching model and re-express (A31) as a function of fixed sufficient statistics.
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To that end, we analyze how MRSkc respond to g/c. In this demand-determined economy,
the aggregate-demand relationship always holds. Since the asset (land in our baseline model)
is in fixed supply and prices are fixed, the marginal utility of private consumption (∂U/∂c) is
fixed and does not change when public consumption changes.5 Hence, we only consider how the
marginal disutility of labor (W′(k)) reacts to public consumption. We find

d ln(MRSkc)

d ln(g/c)
=

d ln(W′(k))
d ln(g/c)

=
1
κ
·

d ln(y)
d ln(g/c)

,

where κ is the Frisch elasticity of labor supply. Using (A27), we obtain

d ln(MRSkc)

d ln(g/c)
=

1
κ
·
(c/y)∗(g/y)∗(dy/dg)
1 − (g/y)∗(dy/dg)

.

Accordingly, the first-order Taylor expansion of MRSkc(g/c) around (g/c)∗) is

MRSkc = (MRSkc)0 +
1
κ
·
(MRSkc)0 (c/y)∗(g/y)∗(dy/dg)

1 − (g/y)∗(dy/dg)
·
g/c − (g/c)∗

(g/c)∗
+O([g/c − (g/c)∗]2).

In the equation the multiplier dy/dg and elasticity κ are evaluated at [(g/c)∗, y0]. To obtain (A29),
we plug this expression for MRSkc into (A31) and reshuffle the terms. Finally, we obtain (A30)
by combining (A31) and (A29). �

Formula (A29) is similar to formula (23) in the matching model; the principal difference
is that the amount of inefficiency is measured by the labor wedge 1 − (MRSkc)0 instead of the
unemployment gap. Nonetheless the formula has similar implications. First, with a positive output
multiplier, optimal stimulus spending is positive in slumps but negative in booms. Second, optimal
stimulus spending is a hump-shaped function of the output multiplier. Third, optimal stimulus
spending is larger when public consumption substitutes more easily for private consumption.
Last, optimal stimulus spending only partially reduces the output gap: MRSkc is brought closer
to one, but remains below one.

Overall, the fixprice model with endogenous capacity leads to similar insights as the matching
model. This is reassuring: irrespective of how productive inefficiency is modeled, stimulus
spending obeys similar general principles. Compared to the fixprice model with fixed capacity,
three differences arise: (a) the model offers a symmetric treatment of excessive production and
insufficient production; (b) it is never optimal to completely fill the output gap; and (c) optimal
stimulus spending is a smooth function of the sufficient statistics.

5For example, in the demand side with land of section 2.4, aggregate demand is given by ∂U/∂c = pV ′(l0)/δ.
This relationship always holds since the economy is demand-determined. As l0 and p are fixed, ∂U/∂c does not
respond to g.
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Yet, for several reasons, the matching model seems more convenient than the fixprice model
with endogenous capacity to think about optimal public expenditure. A first limitation of the
fixprice model is that its description of booms is not fully satisfactory. When there is excessive
production, MRSkc > 1 which implies W′(k) > ∂U/∂c: people, constrained to supply the
amount of services demanded, are working more than they would like. If workers were not
bound to supply whatever is demanded, all of them would stop providing services, as the cost of
providing each service is higher than the income received. In the matching model, in contrast, all
relationships generate surplus for both buyer and seller.

Another limitation of the fixprice model is that the supply side is irrelevant, as the equilibrium
is demand-determined. An implication is that distortionary taxation has no effect at all. In contrast,
in the matching model, both supply and demand determine the equilibrium, so distortionary
taxation reduces output. The matching model is therefore well suited to study the effect of
distortionary taxation on optimal public expenditure—something we do in section 3.3.

A last limitation of the fixprice model is that the labor wedge 1−(MRSkc)0 is more challenging
to measure than the unemployment gap u0 − u∗. As a result, the fixprice formula (A29) is less
convenient to apply than the matching formula (23). Indeed, since u0 is observable, measuring
the unemployment gap only requires to measure the efficient unemployment u∗. This can be
done from (5), following the method developed by Landais, Michaillat, and Saez (2018). This
can also be done by using historical unemployment data, since u∗ does not respond to typical
macroeconomic shocks and is therefore stable over time (see section 4). In contrast, it is difficult
to measure the labor wedge because it is not possible to relate (MRSkc)0 to observable variables.6
One strategy to measure (MRSkc)0 would be to assume that output is efficient before the shocks
and that the utility functionsW andU are stable. Then we could recover (MRSkc)0 from the
observed change in output, the Frisch elasticity (to link the output change to the change in
W′(k)), and a coefficient of risk aversion (to link the output change to the change in ∂U/∂c).
This strategy could work with aggregate-demand shocks but not with aggregate-supply shocks,
as the disutility from laborW varies under such shocks. Hence, it is generally not possible to
measure the labor wedge.

6For the same reason, it is difficult to measure the New Keynesian output gap in the data (Gali 2008, pp. 80–81).
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