INTERMEDIATE MACROECONOMICS MATCHING MODEL OF UNEMPLOYMENT 16. LABOR DEMAND

Pascal Michaillat

 pascalmichaillat.org/c4/
LABOR DEMAND: DEFINITION

- labor demand measures the number of workers that firms want to employ for a given wage and tightness
- labor demand depends on how productive workers are, how costly it is to employ workers (wage), and how easy it is to recruit new workers (tightness)

TWO TYPES OF WORKER

- keeping a vacancy open for a month requires r recruiters
- $r>0$ is a parameter
- hence there are two types of worker in firms:
- N producers: produce goods and services
- R recruiters: fill vacancies by creating job descriptions, advertising vacancies, selecting applicants, reading CVs, conducting interviews
- total number of workers: $\mathrm{L}=\mathrm{N}+\mathrm{R}$

RECRUITER-PRODUCER RATIO

- the recruiter-producer ratio is $\tau(\theta)=\mathrm{R} / \mathrm{N}$
- number of producers and total number of workers are related by the recruiter-producer ratio
- $\mathrm{L}=\mathrm{N}+\mathrm{R}=\mathrm{N}+\mathrm{N} \times \tau(\theta)$
- so $L=(1+\tau(\theta)) \times N$
- when the recruiter-producer ratio is high, there is a larger gap between total number of workers and number of producers

NUMBER OF RECRUITERS IN LABOR MARKET

- $\mathrm{s} \times \mathrm{L}$ jobs are destroyed each month, so with balanced flows $\mathrm{s} \times \mathrm{L}$ jobs need to be created
- vacancies are filled with probability $q(\theta)$, so if V vacancies are posted, $q(\theta) \times V$ jobs are created
- to fill $\mathrm{s} \times \mathrm{L}$ jobs, it is therefore necessary to post a number $V=L \times s / q(\theta)$ of vacancies
- V vacancies require $r \times V$ recruiters, so the number of recruiters is $\mathrm{R}=\mathrm{r} \times \mathrm{s} \times \mathrm{L} / \mathrm{q}(\theta)$

LINK BETWEEN RECRUITER-PRODUCER RATIO AND TIGHTNESS

- Given that $\mathrm{R}=\mathrm{r} \times \mathrm{L} \times \mathrm{s} / \mathrm{q}(\theta)$, we have:
- $R \times q(\theta)=(R+N) \times r \times s$
- $(\mathrm{R} / \mathrm{N}) \times \mathrm{q}(\theta)=(\mathrm{R} / \mathrm{N}+1) \times \mathrm{r} \times \mathrm{s}$
- $\tau(\theta) \times[q(\theta)-r \times s]=r \times s$
- so $\tau(\theta)=(r \times s) /[q(\theta)-(r \times s)]$
- (assumption: θ is low enough so $\mathrm{q}(\theta)-\mathrm{r} \times \mathrm{s}>0$ and $\tau(\theta)>0$)
- property: the recruiter-producer ratio $\tau(\theta)$ is increasing in θ
- because $\mathrm{q}(\theta)$ is decreasing in θ
- when tightness is higher, it is more difficult to fill vacancies, so firms have to allocate more workers to recruiting

FIRMS

- output of a firm is given by its production function $=\mathrm{a} \times \mathrm{N} \alpha$
- α is between 0 and 1
- a represents the productivity of the firm
- N : number of producers employed by the firm
- firms pay a wage W to its L workers (recruiters + producers)
- total labor costs: $\mathrm{L} \times \mathrm{W}=[1+\tau(\theta)] \times \mathrm{N} \times \mathrm{W}$
- labor cost per producer: $(1+\tau(\theta)) \times W$
- firm's profits $=$ production minus labor costs
- profits $=\mathrm{a} \times \mathrm{N}^{\alpha}-[1+\tau(\theta)] \times \mathrm{W} \times \mathrm{N}$

LABOR DEMAND: DERIVATION

- to maximize profits, the derivative of profits with respect to N must be 0
- profits: $\mathrm{a} \times \mathrm{N}^{\alpha}-[1+\tau(\theta)] \times \mathrm{W} \times \mathrm{N}$
- derivative: $\alpha \times \mathrm{a} \times \mathrm{N}^{\alpha-1}-\mathrm{W} \times(1+\tau(\theta))=0$
- this implies $\mathrm{N}^{\alpha-1}=\mathrm{W} \times[1+\tau(\theta)] /[\alpha \times \mathrm{a}]$
- therefore the optimal number of producers for the firm is

$$
N=\left[\frac{\alpha \cdot a}{W \cdot(1+\tau(\theta))}\right]^{1 /(1-\alpha)}
$$

LAST STEP TO OBTAIN LABOR DEMAND

$$
\begin{aligned}
& N=\left[\frac{a \cdot \alpha}{W \cdot[1+\tau(\theta)]}\right]^{1 /(1-\alpha)} \\
& L=[1+\tau(\theta)] \cdot\left[\frac{a \cdot \alpha}{W \cdot[1+\tau(\theta)]}\right]^{1 /(1-\alpha)} \\
& L=\cdot\left[\frac{a \cdot \alpha \cdot[1+\tau(\theta)]^{1-\alpha}}{W \cdot[1+\tau(\theta)]}\right]^{1 /(1-\alpha)} \\
& L=\cdot\left[\frac{a \cdot \alpha}{W \cdot[1+\tau(\theta)]^{\alpha}}\right]^{1 /(1-\alpha)}
\end{aligned}
$$

LABOR DEMAND: EXPRESSION

$$
L^{d}(\theta, W)=\left[\frac{\alpha \cdot a}{W \cdot(1+\tau(\theta))^{\alpha}}\right]^{1 /(1-\alpha)}
$$

- it is obtained by multiplying the optimal number of producers N by $(1+\tau(\theta))$
- this is the expression of the labor demand: the optimal number of workers (recruiters + producers) that firms want to hire

LABOR DEMAND: PROPERTIES

- the profitability of employing workers depends negatively on
- the wage paid to workers (W)
- the cost or recruiting workers, which is governed by recruiter-producer ratio $(\tau(\theta))$
- hence the labor demand $\operatorname{Ld}(\mathrm{W}, \theta)$
- is decreasing in W
- is decreasing in $\theta($ as $\tau(\theta)$ is increasing in $\theta)$

LABOR DEMAND

INCREASE IN WAGES

