INTERMEDIATE MACROECONOMICS MALTHUSIAN MODEL OF GROWTH 23. POPULATION

Pascal Michaillat

 pascalmichaillat.org/c4/
WORKER'S OPTIMAL CONSUMPTION

- a worker chooses consumption and number of children
- to maximize her utility
- subject to her budget constraint
- hence: a worker chooses $\mathrm{c}(\mathrm{t})$
- to maximize $\mathrm{n}(\mathrm{t})^{\beta} \times \mathrm{c}(\mathrm{t})^{1-\beta}$
- where $\mathrm{n}(\mathrm{t})=[\mathrm{y}(\mathrm{t})-\mathrm{c}(\mathrm{t})] / \mathrm{p}$

WORKER'S OPTIMAL CONSUMPTION

- a worker chooses $c(t)$ to maximize $[y(t)-c(t)] \beta \times c(t)^{1-\beta}$
- because $n(t)=[y(t)-c(t)] / p$
- we omit the term p^{β}, which does not change the maximization
- the optimal consumption is $c(t)=(1-\beta) \times y(t)$
- the worker keeps a fraction $1-\beta$ of the food produced to herself
- the worker gives a fraction β of the food produced to her children
- the worker consumes less when
- she produces less food
- she values children more (because then she has more children)

DETAILS OF MAXIMIZATION

- we find c to maximize the function $\mathrm{f}(\mathrm{c})=[\mathrm{y}-\mathrm{c}]^{\beta} \times \mathrm{c}^{1-\beta}$
- the function $\mathrm{f}(\mathrm{c})$ is maximized when the function $\mathrm{g}(\mathrm{c})=$ $\ln (f(c))=\beta \times \ln (y-c)+(1-\beta) \times \ln (c)$ is maximized
- at the maximum, $g^{\prime}(c)=-\beta /(y-c)+(1-\beta) / c=0$
- $\beta /(y-c)=(1-\beta) / c$
- $\beta \times c=(1-\beta) \times(y-c)$

$$
\beta \times c+(1-\beta) \times c=(1-\beta) \times y
$$

- hence: $c=(1-\beta) \times y$

WORKER'S OPTIMAL NUMBER OF CHILDREN

- to satisfy the budget constraint, the number of children must be $\mathrm{n}(\mathrm{t})=[\mathrm{y}(\mathrm{t})-\mathrm{c}(\mathrm{t})] / \mathrm{p}$
- a worker's optimal consumption is $c(t)=(1-\beta) \times y(t)$
- so the optimal number of children is $n(t)=\beta y(t) / p$
- a worker has more children when
- she produces more food (high y)
- she enjoys children more (high β)
- children eat less (low p)

FERTILITY RATE

- the fertility rate is the number of children per adult, $\mathrm{n}(\mathrm{t})$
- we saw: $\mathrm{n}(\mathrm{t})=\beta \times \mathrm{y}(\mathrm{t}) / \mathrm{p}$ and $\mathrm{y}(\mathrm{t})=[\mathrm{AX} / \mathrm{L}(\mathrm{t})]^{\alpha}$
- $\operatorname{son} n(t)=(\beta / p) \times\left[\begin{array}{ll}\text { X X } / L(t)\end{array}\right]^{\alpha}$
- the working population at $\mathrm{t}+1$ is the children population at t
- this is the working population at time $\mathrm{t} \times$ the fertility rate at time t
- hence $L(t+1)=n(t) \times L(t)=(\beta / p) \times[A X / L(t)]^{\alpha} \times L(t)$
- law of motion of population: $\mathrm{L}(\mathrm{t}+1)=(\beta / \mathrm{p}) \times(\mathrm{AX})^{\alpha} \times \mathrm{L}(\mathrm{t})^{1-\alpha}$

STEADY-STATE WORKING POPULATION

- the population dynamics are given by $\mathrm{L}(\mathrm{t}+1)=\phi(\mathrm{L}(\mathrm{t}))$
- where the function $\phi(\mathrm{L})=(\beta / \mathrm{p}) \times(\mathrm{AX})^{\alpha} \times \mathrm{L}^{1-\alpha}$
- steady-state working population satisfies:
- $\mathrm{L}(\mathrm{t}+1)=\mathrm{L}(\mathrm{t})$
- once population is in steady state, it does not change
- so in steady state $L^{*}=\phi\left(L^{*}\right)$
- $\mathrm{L}^{*}=(\beta / \mathrm{p}) \times(\mathrm{AX})^{\alpha} \times\left(\mathrm{L}^{*}\right)^{1-\alpha}$
- hence in steady state: $L^{*}=(\beta / p)^{1 / \alpha} \times(A X)$

STEADY-STATE WORKING POPULATION

DYNAMICS OF WORKING POPULATION

DETERMINANTS OF LONG-RUN POPULATION

- steady-state working population is higher when
- there is more land (high X)
- technology is higher (high A)
- people value children more (high β)
- children eat less (low p)
- in steady state population is constant so the fertility rate is 1
- in steady state total population is twice the working population: same number of workers and children

POPULATION WITH BETTER TECHNOLOGY

$$
\phi(\mathrm{L}(\mathrm{t}) ; \mathrm{A})=(\beta / \mathrm{p})(\mathrm{AX})^{\alpha} \mathrm{L}(\mathrm{t})^{1-\alpha}
$$

L_{t+1}

- technology improves from A^{1} to $\mathrm{A}^{\mathrm{h}}>\mathrm{A}^{1}$
- hence output increases
- at the current population,
households have more food
$L_{t+1}=\phi\left(L_{i} ; A^{h}\right)$
-thus households have more children than in steady state - population grows to a higher steady-state value

