INTERMEDIATE MACROECONOMICS SOLOWIAN MODEL OF GROWTH 25. PRODUCTION \& SAVING

Pascal Michaillat

 pascalmichaillat.org/c4/
US GROWTH AFTER INDUSTRIAL REVOLUTION

- US real GDP / person: GDP(2014) $=9 \times \operatorname{GDP}(1890)$
- due to better technology: inventions, production and management techniques, infrastructure, legal and political institutions
- the Malthusian model predicts that technology advancement leads to higher population but same standards of living (Malthusian trap)
- root cause: the amount of land is fixed
- to explain how technological progress leads to growth in output per worker, we introduce the Solow model of growth
- production relies on the capital stock, which grows with technology

CONVERGENCE FOR OECD COUNTRIES

Source: See Table 10-1.

PRODUCTION FUNCTION

- aggregate production function: $\mathrm{Y}=\mathrm{F}(\mathrm{K}, \mathrm{N})$
- Y: output
- K: capital
- N: labor
- the technology level in the economy determines the level of $\mathrm{F}(\mathrm{K}, \mathrm{N})$
- in more technologically advanced economies, for a given K and $\mathrm{N}, \mathrm{F}(\mathrm{K}, \mathrm{N})$ is higher

PROPERTIES OF PRODUCTION FUNCTION

- $\mathrm{F}(\mathrm{K}, \mathrm{N})$ is increasing in K and N
- $\mathrm{F}(\mathrm{K}, \mathrm{N})$ has constant returns to scale
- $F(b \times K, b \times N)=b \times F(K, N)$ for any scalar b
- $\mathrm{F}(\mathrm{K}, \mathrm{N})$ has decreasing returns to capital
- $\mathrm{F}(\mathrm{K}, \mathrm{N})$ is concave in K : for a given N , increases in K lead to smaller and smaller increases in $\mathrm{F}(\mathrm{K}, \mathrm{N})$
- $\mathrm{F}(\mathrm{K}, \mathrm{N})$ has decreasing returns to labor
- $\mathrm{F}(\mathrm{K}, \mathrm{N})$ is concave in N : for a given K , increases in N lead to smaller and smaller increases in $\mathrm{F}(\mathrm{K}, \mathrm{N})$

OUTPUT AND CAPITAL PER WORKER

- by constant returns to scale, there is a simple relation between
- output per worker $\mathrm{y}=\mathrm{Y} / \mathrm{N}$
- and capital per worker $\mathrm{k}=\mathrm{K} / \mathrm{N}$
- $\mathrm{y}=\mathrm{Y} / \mathrm{N}=\mathrm{F}(\mathrm{K}, \mathrm{N}) / \mathrm{N}=\mathrm{F}(\mathrm{K} / \mathrm{N}, \mathrm{N} / \mathrm{N})=\mathrm{F}(\mathrm{k}, 1)=\mathrm{f}(\mathrm{k})$
- the function f is defined by $\mathrm{f}(\mathrm{x})=\mathrm{F}(\mathrm{x}, 1)$
- $f(k)$ is increasing in k because $F(K, N)$ is increasing in K
- $f(k)$ is concave in k because $F(K, N)$ has decreasing returns to capital

TWO SOURCES OF GROWTH

- output per worker is $\mathrm{y}=\mathrm{f}(\mathrm{k})$
- output per worker measures standards of living
- growth of output per worker comes from
- capital accumulation: a higher k
- movement along the production function
- technological progress: a higher f(.)
- shift up of the production function

CAPITAL ACCUMULATION AND DECREASING RETURNS TO CAPITAL

TECHNOLOGY PROGRESS

capital per worker k

SAVING BEHAVIOR

- assumption 1: closed economy (no exports or imports)
- investment $=$ private saving + public saving
- assumption 2: no public saving (government spending = tax revenues)
- investment $=$ private saving
- assumption 3: private saving S is proportional to income Y
- $\mathrm{S}(\mathrm{t})=\mathrm{s} \times \mathrm{Y}(\mathrm{t})$
- $\mathrm{s}>0$ is a parameter measuring the saving rate
- conclusion: output Y and investment I are related by $\mathrm{I}(\mathrm{t})=\mathrm{s} \times \mathrm{Y}(\mathrm{t})$

LAW OF MOTION OF CAPITAL STOCK

- evolution of the capital stock is driven by:
- investment I: increase in capital stock
- depreciation $\delta \times$ K: decrease in capital stock, because part of the capital stock becomes obsolete
- $\delta>0$ is the depreciation rate
- hence: $\mathrm{K}(\mathrm{t}+1)=\mathrm{K}(\mathrm{t})+\mathrm{I}(\mathrm{t})-\delta \times \mathrm{K}(\mathrm{t})$
- investment comes from saving behavior:
- $\mathrm{K}(\mathrm{t}+1)=(1-\delta) \times \mathrm{K}(\mathrm{t})+\mathrm{s} \times \mathrm{Y}(\mathrm{t})$

SAVING VERSUS DEPRECIATION

- simplifying assumption: employment N is constant
- we divide law of motion of K by N :
- $\mathrm{K}(\mathrm{t}+1) / \mathrm{N}=(1-\delta) \times \mathrm{K}(\mathrm{t}) / \mathrm{N}+\mathrm{s} \times \mathrm{Y}(\mathrm{t}) / \mathrm{N}$
- hence: $k(t+1)-k(t)=s \times y(t)-\delta \times k(t)$
- the change in capital per worker = saving per worker minus depreciation per worker
- if saving per worker > depreciation per worker, capital per worker increases over time

LAW OF MOTION AND STEADY STATE OF CAPITAL PER WORKER

- we use production function to obtain law of motion:
- $k(t+1)-k(t)=s \times f(k(t))-\delta \times k(t)$
- law of motion: capital per worker today $(\mathrm{k}(\mathrm{t}))$ determines capital per worker tomorrow $(k(t+1))$
- in steady state, capital per worker is constant:
- investment per worker = depreciation per worker
- steady-state capital k^{*} is such that $\mathrm{s} \times \mathrm{f}\left(\mathrm{k}^{*}\right)=\delta \times \mathrm{k}^{*}$

