INTERMEDIATE MACROECONOMICS SOLOWIAN MODEL OF GROWTH 29. BALANCED GROWTH

Pascal Michaillat pascalmichaillat.org/c4/

LAW OF MOTION OF CAPITAL PER EFFECTIVE WORKER

- using the definition of growth rate g_k:
 - $k(t+1) k(t) = g_k \times k(t)$
- first step: compute g_k
 - since k = K / AN
 - then $g_k = g_K (g_A + g_N)$
- hence $k(t+1) k(t) = [g_K (g_A + g_N)] \times k(t)$
- which implies: $k(t+1) k(t) = g_K \times k(t) [g_A + g_N] \times k(t)$

GROWTH RATE OF CAPITAL

- evolution of the capital stock is driven by investment and depreciation: capital tomorrow = capital today + investment today – depreciation today
 - $K(t+1) K(t) = I(t) \delta \times K(t)$
- growth rate of capital:
 - $g_K = [K(t+1) K(t)] / K(t) = [I(t) / K(t)] \delta$
- since $K(t) = k(t) \times A(t)N(t)$, we conclude that
 - $g_K \times k(t) = I(t) / [A(t)N(t)] \delta \times k(t) = i(t) \delta \times k(t)$

BACK TO LAW OF MOTION OF CAPITAL PER EFFECTIVE WORKER

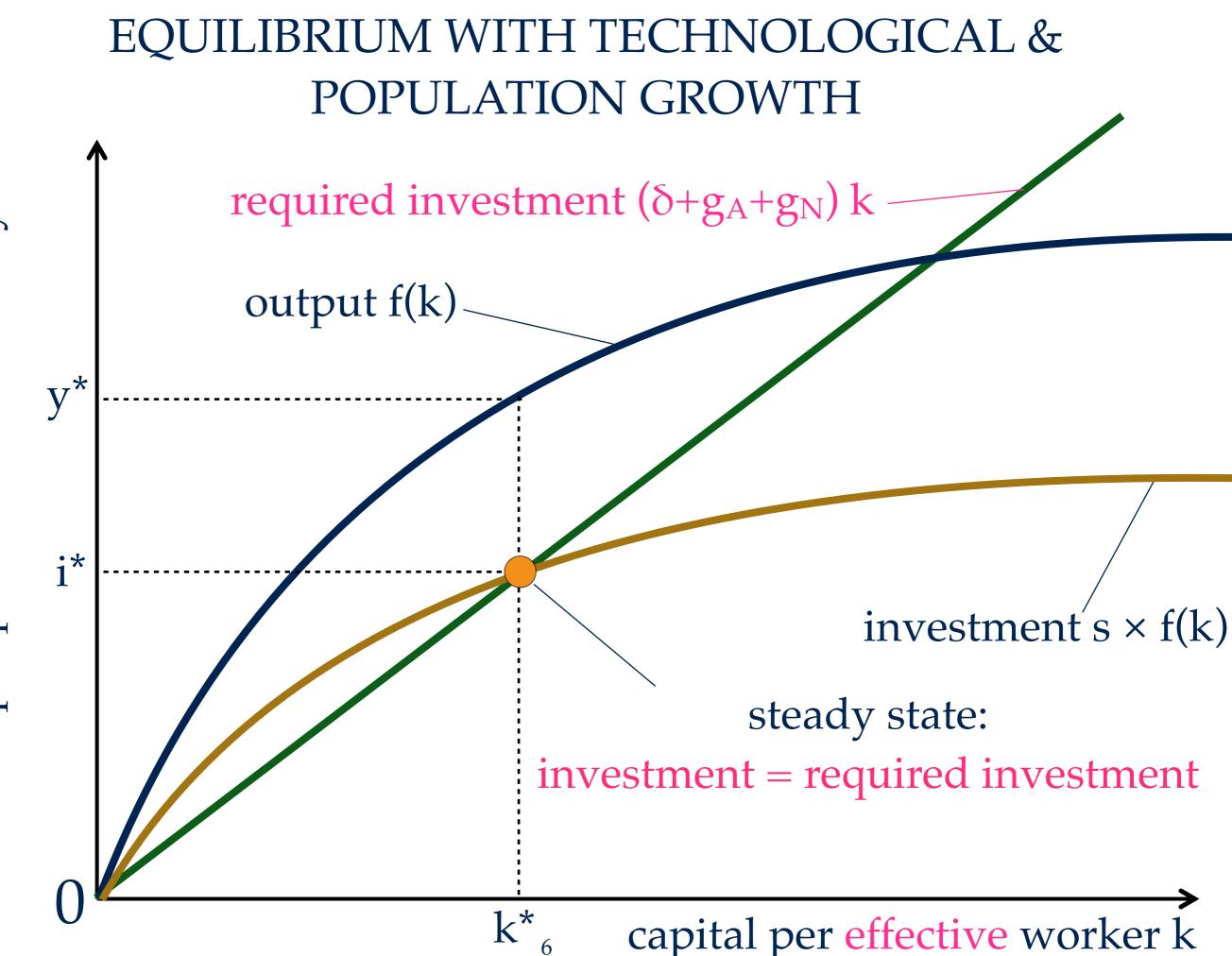
- we have:
 - 1. $k(t+1) k(t) = g_K \times k(t) [g_A + g_N] \times k(t)$
 - 2. $g_K \times k(t) = i(t) \delta \times k(t)$
 - 3. $i(t) = s \times f(k(t))$
- hence: $k(t+1) k(t) = s \times f(k(t)) [\delta + g_A + g_N] \times k(t)$
- same law of motion as in basic Solow model
 - but δ is replaced by $\delta + g_A + g_N$

THE STEADY STATE

- capital per effective worker is constant
- output per effective worker is constant
- using the law of motion of capital per effective worker, we find that steady-state capital per effective worker k* satisfies

•
$$s \times f(k^*) = [\delta + g_A + g_N] \times k^*$$

- to maintain k = K/AN constant, there must be enough investment
 - to cover depreciation of K (δ)
 - to cover growth of A (g_A) and growth of N (g_N)



output per effective worker y

definition of steady state

	Growth Rate:
Capital per effective worker	0
Output per effective worker	0
Capital per worker	g _A
Output per worker	g _A
Labor	g _N
Capital	$g_A + g_N$
Output	$g_A + g_N$

	Growth Rate:
Capital per effective worker	0
Output per effective worker	0
Capital per worker	g _A
Output per worker	g _A
Labor	g _N
Capital	$g_A + g_N$
Output	$g_A + g_N$

growth rate of population is given

	Growth Rate:
Capital per effective worker	0
Output per effective worker	0
Capital per worker	g _A
Output per worker	g _A
Labor	g _N
Capital	$g_A + g_N$
Output	$g_A + g_N$

 $(K/N)^* = k^* \times A^{/}$ $(Y/N)^* = y^* \times A$

there is balanced growth because several variables grow at the same rate

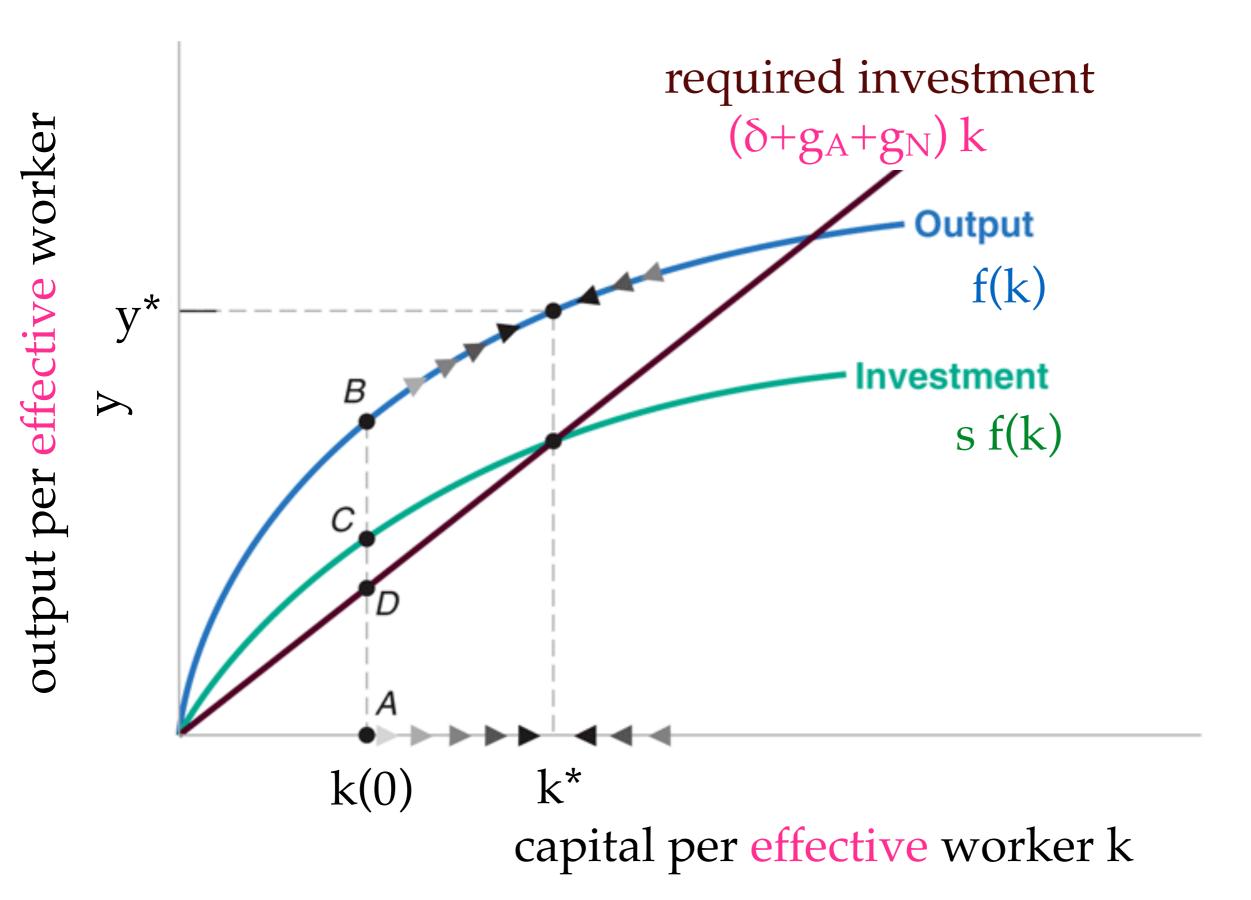
	Growth Rate:
Capital per effective worker	0
Output per effective worker	0
Capital per worker	g _A
Output per worker	g _A
Labor	g _N
Capital	$g_A + g_N$
Output	$g_A + g_N$

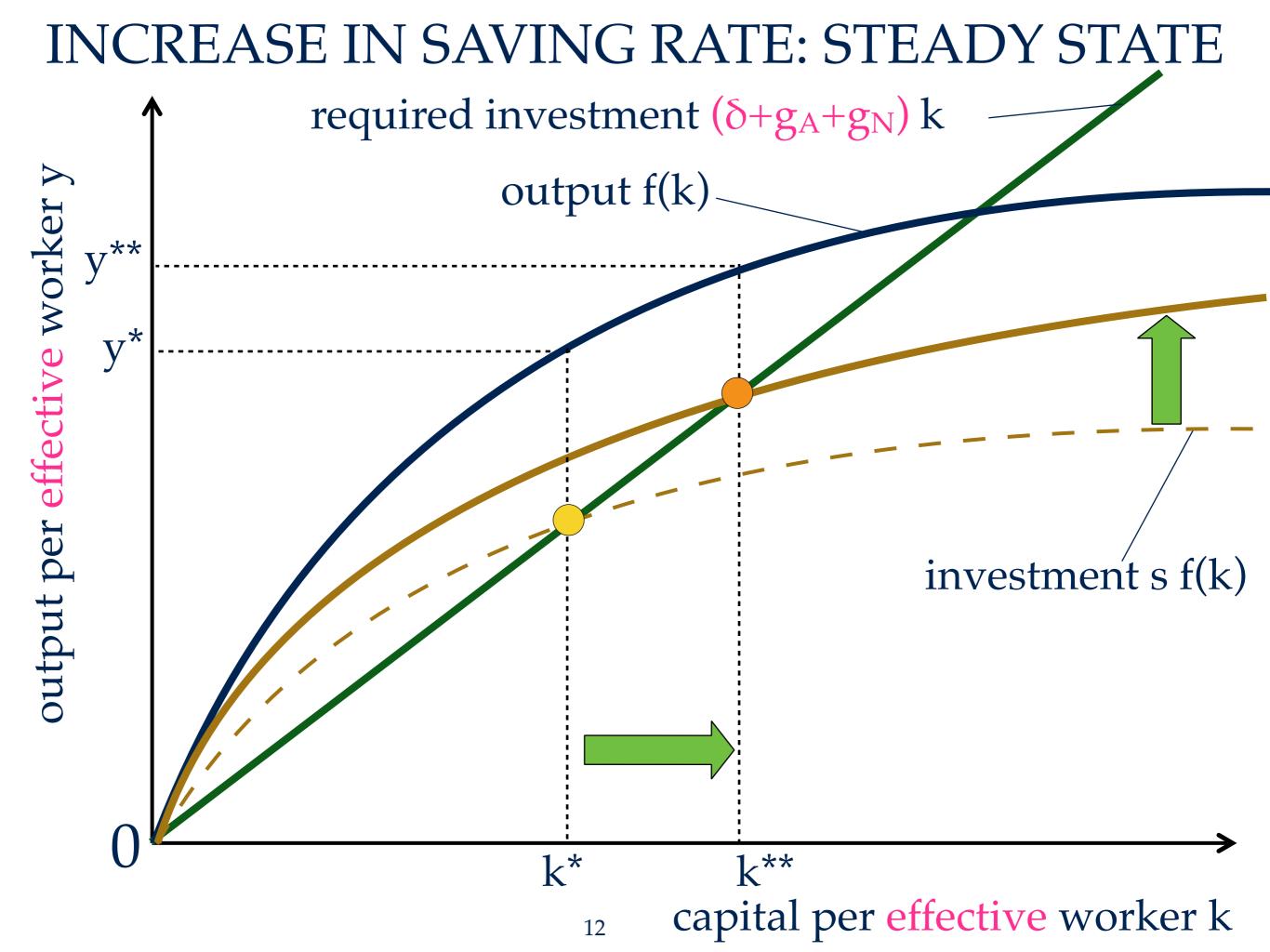
 $K^* = k^* \times A \times N$

 $Y^* = y^* \times A \times N$

there is balanced growth because 'several variables grow at the same rate

EQUILIBRIUM DIAGRAM





INCREASE IN THE SAVING RATE: DYNAMICS

