#### INTERMEDIATE MACROECONOMICS IS-LM MODEL OF BUSINESS CYCLES 8. IS SUBMODEL

#### Pascal Michaillat pascalmichaillat.org/c4/

#### OVERVIEW

- IS submodel describes how expenditures on goods
  (Z) relates to income (Y) in the economy
  - 1. consumers' behavior: expenditure function
  - 2. accounting identity: income = expenditure
- in equilibrium, both conditions are satisfied

# DEFINING THE EQUILIBRIUM

- first equilibrium condition: expenditure function
  - $Z = [c_0 + I + G c_1 \times T] + c_1 \times Y$
- second equilibrium condition: expenditure = income
  - Z = Y
- 2 equations & 2 variables (Z,Y): equilibrium is well defined

# EQUILIBRIUM INCOME

- to determine the equilibrium level of income Y\*, we jointly solve both equilibrium conditions
- $Z = [c_0 + I + G c_1 \times T] + c_1 \times Y$  and Z = Y
- $Y = [c_0 + I + G c_1 \times T] + c_1 \times Y$  [substituting Z out]
- $(1 c_1) \times Y = c_0 + I + G c_1 \times T$  [algebra]
- hence:  $Y^* = (c_0 + I + G c_1 \times T) / (1 c_1)$
- in equilibrium: income  $Y^*$ = expenditure  $Z^*$  = GDP

#### AUTONOMOUS EXPENDITURE

- $Y^* = (c_0 + I + G c_1 \times T) / (1 c_1)$
- $(c_0 + I + G c_1 \times T)$ : autonomous expenditure
  - it measures aggregate demand (AD): the level of demand in the economy, determined by the desire to spend of households (c<sub>0</sub>), firms (I), and the government (G)
  - shocks to AD are key drivers of business cycles
  - changes in c<sub>0</sub> reflect changes in people's desire to spend: it is an especially important AD shock

#### SPENDING MULTIPLIER

- $Y^* = (c_0 + I + G c_1 \times T) / (1 c_1)$
- $1/(1-c_1)$ : spending multiplier
  - it "multiplies" autonomous expenditure to get equilibrium expenditure: it how \$1 of autonomous expenditure translates into GDP
  - if c<sub>1</sub> = 0.6, multiplier is 1/(1 0.6) = 2.5: an increase in autonomous spending by \$1 increases GDP by \$2.5
  - the multiplier is different for different consumption and investment functions



# EFFECT OF AD SHOCKS

- a positive AD shock is an increase in autonomous expenditure
  - an increase in the level c<sub>0</sub> of the consumption function
  - an increase in government spending G
  - an increase in investment I
  - a reduction in taxes / an increase in transfers (decrease in T)
- through the multiplier, an increase in autonomous expenditure has a greater than one-for-one effect on equilibrium income Y\*







# AD SHOCK EXAMPLE: GOVERNMENT SPENDING

- an increase in government spending G leads to an increase in income, which in turn leads to an increase in expenditure: thus government spending is "multiplied"
- the equilibrium increase in income is larger than the initial increase in spending, by a factor equal to the spending multiplier: 1/(1 MPC) > 1
- the government multiplier depends on the marginal propensity to consume (MPC), which can be estimated using econometric methods

#### INVESTMENT = SAVING

- an alternative formulation of the condition
  expenditure = income (Z=Y) is investment = saving
  - this is the original formulation proposed by John Maynard Keynes in the "General Theory of Employment, Interest and Money" in 1936
  - it explains the name "IS curve"

## PRIVATE AND PUBLIC SAVING

- private saving (S) is disposable income less consumption expenditure: S = D - C = Y - T - C
- public saving is revenue from taxes less spending on transfers less spending on goods & services:
  - public saving = T G
  - public saving > 0: budget surplus
  - public saving < 0: budget deficit

EQUIVALENCE BETWEEN INCOME = EXPENDITURE AND INVESTMENT = SAVING

- income = expenditure: Y = C + I + G
- Y T C = I + (G T) [substract T]
- S = I + (G T) [definition of private saving]
- I = S + (T G)
- hence, investment = private saving + public saving
- or, investment= total saving

## MARGINAL PROPENSITY TO SAVE

- private saving is disposable income consumption
  - S = D C
- consumption function yields  $S = D c_0 c_1 \times D$ 
  - $S = -c_0 + (1 c_1) \times D$
- $-c_0 < 0$ : dis-saving when D = 0
- 1 c<sub>1</sub> >0: marginal propensity to save (MPS)
  - when D increases by \$1, saving increases by MPS

## PROPENSITY TO SAVE IN THE US

#### TABLE 13.2 Saving Rates by Income Quintile

| Income Quintile | <b>Median Saving Rate</b> |
|-----------------|---------------------------|
| 1 (Lowest)      | 8.6%                      |
| 2               | 12.9%                     |
| 3               | 16.3%                     |
| 4               | 18.0%                     |
| 5 (Highest)     | 23.0%                     |

- richer households save a larger share of their income
- poorer households save a smaller share of their income
- for this reason, government transfers are often targeted to poorer households: this will create larger multipliers